Nanochannel-Based Single Molecule Recycling
نویسندگان
چکیده
منابع مشابه
Nanochannel-based single molecule recycling.
We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through a stationary laser focus. Single molecule fluorescence detected during the transit time through the laser focus is used to repeatedly rever...
متن کاملSimulation of single-molecule trapping in a nanochannel.
The detection and trapping of single fluorescent molecules in solution within a nanochannel is studied using numerical simulations. As optical forces are insufficient for trapping molecules much smaller than the optical wavelength, a means for sensing a molecule's position along the nanochannel and adjusting electrokinetic motion to compensate diffusion is assessed. Fluorescence excitation is p...
متن کاملFabrication and interfacing of nanochannel devices for single-molecule studies
Nanochannel devices have been fabricated using standard micromachining techniques such as optical lithography, deposition and etching. 1D nanochannels with thin glass capping and through-wafer inlet/outlet ports were constructed. 2D nanochannels have been made transparent by oxidation of polysilicon channel wall for optical detection and these fragile channels were successfully connected to mac...
متن کاملA Nanoelectrode Lined Nanochannel for Single-molecule DNA Sequencing
This thesis presents a novel idea for a device for single-molecule DNA sequencing. The device consists of a nanometer scale water channel embedded in glass, with an array of evenly spaced nanoelectrodes running at a 90 degree angle with the channel and terminating on both sides of it. These nanoelectrodes permit an electric characterization of the DNA, differentiating between the bases on the b...
متن کاملNanopore and Nanochannel Synthesis for Molecular Interaction Characterisation at the Single-Molecule Level
In aqueous conditions, we monitor in real time the ionic current through individual artificial nanopores under an applied potential. The nanopores are drilled through Si 3 N 4 membranes 30 and 50 nm thick to diameters rangingfrom 2.5 to 6.5 nm. After chemical surface hydroxylation, and addition of bipyridyl, we are able to observe alterations of the ionic current recording when negatively charg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2012
ISSN: 1530-6984,1530-6992
DOI: 10.1021/nl301341m